Understanding the Nuances of Targeted Protein Degradation

Destroyug Targeting disease-causing proteins to deliver hope Stewart L. Fisher Webinar December 10, 2020

Forward-looking Statements

The following presentation contains forward-looking statements. All statements other than statements of historical fact are forward-looking statements, which are often indicated by terms such as "anticipate," "believe," "could," "estimate," "expect," "goal," "intend," "look forward to," "may," "plan," "potential," "predict," "project," "should," "will," "would" and similar expressions. These forward-looking statements include, but are not limited to, statements regarding the therapeutic potential of C4 Therapeutics, Inc.'s technology and products. These forward-looking statements are not promises or guarantees and involve substantial risks and uncertainties. Among the factors that could cause actual results to differ materially from those described or projected herein include uncertainties associated generally with research and development, clinical trials and related regulatory reviews and approvals, as well as the fact that the product candidates that we are developing or may develop may not demonstrate success in clinical trials. Prospective investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date hereof. C4 Therapeutics, Inc. undertakes no obligation to update or revise the information contained in this presentation, whether as a result of new information, future events or circumstances or otherwise.

Intellectual Property

C4 Therapeutics, Inc. owns various registered and unregistered trademarks in the U.S. and overseas, including, without limitation, C4 THERAPEUTICS, TORPEDO, BIDAC and MONODAC. All trademarks or trade names referred to in this presentation that we do not own are the property of their respective owners. Solely for convenience, the trademarks and trade names in this prospectus are referred to without the symbols [®] and TM, but those references should not be construed as any indicator that their respective owners will not assert, to the fullest extent under applicable law, their rights thereto.

Degraders Enable a Catalytic Cycle that Destroys Disease-Relevant Proteins

Protein Degradation is Fundamentally Different than Protein Inhibition

Protein degraders allow for a more potent and durable pharmacological response at lower overall exposure levels than inhibitors

Key Advantages of Protein Degraders

1. Improved Potency

Degraders are recycled and can engage multiple target proteins, resulting in improved activity against resistant proteins, greater depth of effect, and more durable outcomes

2. Fast Response

Rapid degradation of target leads to strong and prolonged biological response

3. High Selectivity

Degraders can leverage multiple layers of selectivity in cellular machinery

4. Expansive Target Landscape

Degraders can be designed to bind to any part of the protein and are not limited to the active site, like most small molecule inhibitors, which means that previously undruggable targets may be degraded

TORPEDO Platform: Robust Drug Discovery and Higher Confidence in Clinical Outcomes

Design

- Computational method incorporates experimental data to identify top models
- Atomic-level degrader design utilized to improve selectivity and exquisite potency

Analyze

- Cellular degradation data fitted using an enzymology framework
- Key parameters describe intrinsic degradation activity

Predict

- Universal modeling framework merges
 degradation activity with degrader exposure
- Robust predictions of depth and duration of *in vivo* target degradation **at any dose**

Rapid delivery of potent drug candidates through informed and efficient drug discovery

The TORPEDO Platform Employs Cutting Edge Structure-based Design

X-RAY CRYSTALLOGRAPHY

- >70 proprietary X-ray structures solved
- Coverage includes key E3 ligases, ~70% of targets
- Supports rapid degrader chemical optimization

HYDROGEN-DEUTERIUM EXCHANGE MASS SPEC (HDX-MS)

tigas

- Established in 2018 via open access labs at UMass Amherst
- Allows in solution mapping of degrader promoted complexes
- Enables C4T proprietary ternary complex prediction pipeline

Incorporation of Solution State Data is Critical for Predictive Ternary Complex Models

in silico modeling of BRD4 degraders

Ternary complex ranking using HDX-MS Data

Degrader Only >10,000 Conformations Remove BRD4 Steric Clashes ~3,200 Conformations Virtual Docking with CRBN ~430 Conformations Rank Conformers on HDX Constraints 4 Conformations

Ternary Complex Modeling Approach Validated using CRBN-based BRD4 Degraders

Degraders are Essential Catalytic Activators

Fisher and Phillips, Curr Opin Chem Biol. 2018, 44, 47

Cellular Degradation is Time Dependent

Single Timepoint

Time Course

- DC₅₀ [degrader] for 50% target depletion
 (≈ cellular potency)
 E_{max} % remaining target @ assay timepoint
 - (maximal degradation \approx degradation rate)

BiDAC Degradation Activity is <u>Not</u> Strictly Dependent on Target Binding Affinity

- Excellent degradation observed with reduced (weak) target binding affinity
- Can be leveraged to obtain coverage of clinically-relevant, secondary resistance mutations to inhibitor therapies

Prevailing Assumption: Ternary Complex Formation Drives Potency

Implications:

- Ternary complex $K_{tf} = K_M$
- Ternary Complex Max Fraction $\propto V_{max}$
- Positive binding cooperativity $\propto V_{max}$

What about Kinetically-driven Systems?

Implications:

– William P. Jencks, 1997

- *No correlations* between ternary complex formation and catalysis
- Negative binding cooperativity tolerated

"Optimal catalysis does not necessarily result from a high affinity for the substrate"

Applying an Enzymology Framework Provides Quantitative Assessments of Degrader Activity

Proprietary PK/PD Models Founded on Degradation Enzymology Framework

Enzymology Framework

KEY PARAMETERS

PK/PD Models Provide Robust Predictions Across the Diverse Targets and Degrader Classes

CFT7455, 1 mg/kg dose po, KI-KJ Anaplastic Large Cell Lymphoma model

CFT7503, 10 mg/kg dose po, Yamato Synovial Sarcoma model

CFT-12521, 30 mg/kg dose iv, KIF-5B:RET Fusion model

PK/PD Models Provide Robust Predictions Across the Diverse Targets and Degrader Classes

CFT7455, 1 mg/kg dose po, KI-KJ Anaplastic Large Cell Lymphoma model

CFT-17977, 30 mg/kg dose po, A375 model **C4** Therapeutics

CFT7503, 10 mg/kg dose po, Yamato Synovial Sarcoma model

CFT-12521, 30 mg/kg dose iv, KIF-5B:RET Fusion model

PK/PD Models Provide Robust Predictions Across the Diverse Targets and Degrader Classes

CFT7455, 1 mg/kg dose po, KI-KJ Anaplastic Large Cell Lymphoma model

CFT-17977, 30 mg/kg dose po, A375 model **C4** Therapeutics

CFT7503, 10 mg/kg dose po, Yamato Synovial Sarcoma model

CFT-12521, 30 mg/kg dose iv, KIF-5B:RET Fusion model

Pharmacodynamic Threshold: Linking Pharmacodynamics to Efficacy

• PDT = Pharmacodynamic threshold required for *desired efficacious response*

- Function of target engagement/degradation and exposure
- Dependent on target biology and tumor; not dependent on drug modality

Degrader Catalytic Activity Drives Pharmacology: Lower Exposures Required

AUC_{Degrader} < AUC_{Inhibitor} to Achieve Equivalent Target Efficacious Response

Degrader Pharmacodynamic Driver Landscape

POOR DEGRADER

GOOD DEGRADER

EXCELLENT DEGRADER

- High catalytic activity
- Rapid target degradation drives effect
- No threshold required

- Low catalytic activity
- Pharmacological effect driven by binding/inhibition
- High AUC required to maintain target engagement

Potential Advantages of Degraders over Inhibitors

- PDT analysis assumes equivalent pharmacological response for degraders and inhibitors
- Degraders are expected to exhibit one or more of the following attributes over inhibitors (target dependent):
 - Prolonged activity duration due to target resynthesis requirement (PK/PD hysteresis)
 - Amplified activity against requisite dimers
 - Activity against scaffolding functions
 - Enhanced selectivity
 - Activity against secondary mutations

Degraders ≠ Inhibitors

Degraders are expected to have *enhanced* pharmacological response over inhibitors

The C4 Therapeutics Team

