

Discovery of a Potent and Selective BRD9 BiDAC Degrader with Activity in a Preclinical Model of Synovial Sarcoma

atherapeutics

Kate Jackson

4th Targeted Protein Degradation Summit October 26-28, 2021

Forward-looking Statements and Intellectual Property

Forward-looking Statements

The following presentation contains forward-looking statements. All statements other than statements of historical fact are forward-looking statements, which are often indicated by terms such as "anticipate," "believe," "could," "estimate," "expect," "goal," "intend," "look forward to," "may," "plan," "potential," "predict," "project," "should," "will," "would" and similar expressions. These forward-looking statements include, but are not limited to, statements regarding the therapeutic potential of C4 Therapeutics, Inc.'s technology and products. These forward-looking statements are not promises or guarantees and involve substantial risks and uncertainties. Among the factors that could cause actual results to differ materially from those described or projected herein include uncertainties associated generally with research and development, clinical trials and related regulatory reviews and approvals, as well as the fact that the product candidates that we are developing or may develop may not demonstrate success in clinical trials. Prospective investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date hereof. C4 Therapeutics, Inc. undertakes no obligation to update or revise the information contained in this presentation, whether as a result of new information, future events or circumstances or otherwise.

Intellectual Property

C4 Therapeutics, Inc. owns various registered and unregistered trademarks in the U.S. and internationally, including, without limitation, C4 THERAPEUTICS, our housemark logo, the name of our TORPEDO platform, and the names of our BIDAC and MONODAC degrader products. All trademarks or trade names referred to in this presentation that we do not own are the property of their respective owners. Solely for convenience, the trademarks and trade names in this prospectus are referred to without the symbols ® and ™, but those references should not be construed as any indicator that their respective owners will not assert, to the fullest extent under applicable law, their rights thereto.

BRD9: Drugging the Undruggable with a BiDAC Degrader Approach

Strong Rationale for Degrader Approach

- Synovial sarcoma (SS) is dependent on BRD9 due to the oncogenic SS18-SSX translocation
- Inhibition of the BRD9 bromodomain is insufficient to ablate its oncogenicity

Source: NIH SEER Database, Primary Literature Consensus

Brien et al. 2018

Clear Unmet Need

 Very limited benefit of treatments for metastatic or advanced synovial sarcoma, median survival ~18 months

Defined Patient Population

- US incidence: ~900 cases/year
- ~10% of all soft tissue sarcomas
- Median age at diagnosis: 34 years old

Patient figures represent estimated U.S. annual incidence

Synovial Sarcoma is Driven by Aberrant BAF Complex Biology

BRD9 Inhibition vs. Degradation

BRD9 associates with chromatin independent of its bromodomain, therefore traditional BRD9 inhibitors do not fully ablate oncogenic transcription

Published BRD9 Degraders – Excellent In Vitro Tool Compounds

C4T's Approach to BiDAC Degrader Discovery

BRD9 BiDAC Degrader HIT

GOAL: Identify a drug-like compound with a mouse PK profile suitable to demonstrate proof-of-concept efficacy in a mouse xenograft model

BRD9 BiDAC Degrader HIT: Design Objectives

GOAL: Identify a drug-like compound with a mouse PK profile suitable to demonstrate proof-of-concept efficacy in a mouse xenograft model

Linker Length and Composition

Compound	Linker	BRD9 DC₅₀ 2h (nM)	E _{max} 2h (%)	
1 (HIT)	2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	4	
2	$\sim\sim\sim\sim\sim$	91	3	AIKYI >> PEG
3	$\sim\sim\sim\sim$	3	3	
4	2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	67	4	Reduction of linker
5	$\sim\sim\sim$	242	23	some loss of potency
6	\sim	>9990	67	· · · ,

Will shorter linker lengths be tolerated with non-phthalimide CRBN binders?

Shorter Linker Length Tolerated with Alternate CRBN Binder

'NH

N-aryl glutarimide (Replacement for phthalimide)

Compound	Linker	BRD9 DC₅₀ 2h, (nM)	E_{max 2h (%)}	Mouse IV CL [mL/min/kg]	
7	\$~~~~ ¹ 5	160	23	107	
8	<i>t</i>	>9990	67		
9	~~~~jr	>9990	67		 Easy to miss degradation signal if not exploring
10	<i>t</i> ~~~t	>9990	62		systematically
11	<i>સ</i> ્ત્રુર	135	5		
12	<i>\</i> ~~ <i>\</i>	>9990	58		
13	$\gamma_{\mathbf{k}}$	249	4		Desirable reduction in MW
14	**	187	9	93	• Key analogs for next round
15	none (piperidine amide)	>9990	55	25	
C Thorapouti	00				

C4 Therapeutics

How to Improve PK? Metabolite-ID for the Original HIT

- Met-ID studies suggest glycyl in exit vector region is a source of metabolic instability
- Next SAR step → Identify alternative structural feature to replace glycine

C4 Therapeutics

Glycyl Replacement Can Offer Potency & Metabolic Stability Improvement

Goals:

- Improve potency
- Improve metabolic stability

У	Cmpd	Linker	BRD9 DC₅₀ 2h, (nM)	E_{max 2h (%)}	Mouse IV CL [mL/min/kg]
	14	$\sim \mathbb{I}_{\mathbb{N}}$	187	9	93
	15	∼ _N ≻H-¢,	88	3	102
)	16	KNALL	305	24	88
	17	K-N), NI	224	11	56
	18	~_NH_%	25	10	68
	19	<u>~_hv_</u>	98	18	79
	20	$\widetilde{}$	7	4	157
	21	$\sim N$	5	4	36
	22	<u>√</u> _n <u></u> _n_¢	35	8	103
	23		43	8	86
	24		63	19	31

	Glycyl Replacement Can Offer Potency	Cmpd	Linker	BRD9 DC₅₀ 2h, (nM)	E_{max 2h (%)}	Mouse IV CL [mL/min/kg]
	& Metabolic Stability Improvement	14	$\sim \frac{1}{2}$	187	9	93
		15	$\widetilde{}_{N} \hspace{-1mm} \searrow \hspace{-1mm} \mathbb{I}_{N} \hspace{-1mm} \mathbb{I}_{N}$	88	3	102
		16	K-NJ IL	305	24	88
	Exit Vector Moiety	17	K-N), N	224	11	56
2h, BRD9	2h, BRD9 HiBiT, 293T cells	18	<u>√_n_H_%</u>	25	10	68
	100 BRD7	19	√_∺∾⟨_	98	18	79
ninine	80-	20	$\widetilde{}_{N}$	7	4	157
0 Ren	⁶⁰ Potency & PK ⁴⁰ improvement but	21	$\widetilde{-} \widetilde{-} \widetilde{-} \widetilde{-} \widetilde{-} \widetilde{-} \widetilde{-} \widetilde{-} $	5	4	36
BRD(20 selectivity eroded	22	$\sim \sqrt{-n} \sqrt{n} \sqrt{n}$	35	8	103
ð	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23		43	8	86
	Degrader Concentration	24		63	19	31
	C4 Therapeutics © 2021 C4 Therapeuti	cs, Inc.				14

Single Atom Change is Beneficial for Bromodomain Selectivity

Hypothesis:

 Small modification in exit vector region could influence exit trajectory & ternary complex structure, thereby influencing selectivity over BRD4 and BRD7

Cmpd	Linker	BRD9 DC₅₀ 2h, (nM)	E_{max 2h (%)}	Mouse IV CL [mL/min/kg]
21	$<\!$	5	4	36
25	$\widetilde{}^{-n} \widetilde{}^{n-} \widetilde{}$	15	8	154
26		158	36	10
27	$\mathcal{F}^{n} \subset \mathcal{H}^{n}$	39	5	31
28	And_{N}	>5000	45	42
29	And_{N}	55	7	55
30	$\widetilde{}$	7	4	157
31	< N > 1	286	24	42
32	$\widetilde{}$	>1000	58	
33	~_n_n_v_	6	15	786

	Single Atom Change is Beneficial		Linker	BRD9 DC₅₀ 2h, (nM)	E_{max 2h (%)}	Mouse IV CL [mL/min/kg]
	for Bromodomain Selectivity	21	$<\!$	5	4	36
		25	$ ^{n} ^{n} $	15	8	154
		26	$< N_{N} > N_$	158	36	10
	Moiety Linker	27	$\operatorname{And}_{\mathrm{N}}$	39	5	31
	Compound 27 2h, BRD9 HiBiT, 293T cells	28	\mathcal{F}^{N}	>5000	45	42
	BRD7	29	int_{N}	55	7	55
	BRD4 BRD9 BRD9	30	$\widetilde{}$	7	4	157
60 60 40	H 60 40 40	31	$< \sqrt{2}$	286	24	42
		32	$\widetilde{-} \mathbb{V} = \mathbb{V}$	>1000	58	
	Degrader Concentration	33	$\sim 100 \text{ m}^{-1}$	6	15	786
	C4 Therapeutics © 2021 C4 Therapeutics	, Inc.				16

Single Atom Change is Beneficial for Bromodomain Selectivity

Compound 27: Reasonable balance of potency, mouse IV PK, and selectivity

Μα	Mouse PO PK (10 mg/kg)		
CL (mL/min/kg)	T_{1/2} (h)	V_{d,ss} (ng*h/mL)	%F
31	7	4.8	0.1

C4 Therapeutics

© 2021 C4 Therapeutics, Inc.

Cmpd	Linker	BRD9 DC₅₀ 2h, (nM)	E_{max 2h (%)}	Mouse IV CL [mL/min/kg]
21	$\sim \mathbb{N} \to \mathbb{N}$	5	4	36
25	$\widetilde{}$	15	8	154
26	< <u>_</u> N	158	36	10
27	Fr_{N}	39	5	31
28	$\operatorname{And}_{\mathrm{N}}$	>5000	45	42
29	$\sum_{n \in \mathbb{N}} \sum_{n \in \mathbb{N}} \sum_{i \in \mathbb{N}} \sum_{$	55	7	55
30	$\widetilde{}$	7	4	157
31	< N > 1	286	24	42
32	$\widetilde{}$	>1000	58	
33	$\sim 100 \text{ m}$	6	15	786

17

Selectivity Considerations: BRD Sequence Alignments Diverge at ZA-loop

- Bromodomain sequences deviate within the ZA-loop near aZ''
 - Modeling and HDX data suggest this region might interact with CRBN in the ternary complex
- In BRD7, there is Phe just before ZA-loop rather than Ala (added bulk)
- In **BRD4**, there is \geq 4 residue insertion in ZA-loop relative to BRD9
- Selectivity partially attributed to involvement of ZA-loop in ternary complex

Compound 21 Ternary Complex Model

Compound 21 Ternary Complex Model

Compound 21 Ternary Complex Model

Comparing Ternary Complex Models for Compound 21 and 27

- ~1.5k TCMs generated for Compounds 21 & 27, superimposed using BRD9 (CRBN removed)
- Compound 21: TCMs cover broad conformational space due to flexible C-N bond in exit vector
- Compound 27: TCMs occupy two major clusters due to more narrowly-defined amide conformation

Comparing Ternary Complex Models for Compound 21 and 27

- ~1.5k TCMs generated for Compounds 21 & 27 superimposed using CRBN (BRD9 removed)
- Compound 21: Broader conformational space, larger radius sampled \rightarrow less selective
- Compound 27 : Smaller radius sampled \rightarrow more selective

Selectivity: Compound 27 Does Not Degrade Neomorphic Off-targets

SALL4

- Essential for embryonic development
- Linked to the teratogenicity associated with thalidomide and other IMiDs

Important for lymphocyte development
 and other physiological processes

Compound 27 Degrades Endogenous BRD9, Inhibits Synovial Sarcoma Cell Growth

Compound 27 degrades endogenous BRD9
 in the Yamato-SS synovial sarcoma cell line

 Compound 27 results in growth inhibition of BAFperturbed HSSYII synovial sarcoma cells but not BAF-wild type SW982 soft tissue sarcoma cells

Compound 27 Inhibits Growth of Synovial Sarcoma Xenograft Model

Activity Tolerability 20-Yamato-SS Tumor volume (mm³) 2500-Vehicle Vehicle Compound 27 (10 mg/kg IV QD) Compound 27 (10 mg/kg IV QD) % Body Weight Change 2000 1500· 1000 500· 0. -20-14 21 0 7 0 7 14 21 Time (days) Time (days)

Synovial Sarcoma CDX (Yamato-SS)

C4 Therapeutics

Compound 27 is Efficacious in a PDX Model of Synovial Sarcoma

Activity Tolerability 2000₇ PDX SA13412 Tumor volume (mm 3) 20 Vehicle (PO, QD) Vehicle (IP QD) Compound 27 (30 mg/kg IP QD) % Body Weight Change Compound 27 (30 mg/kg, IP QD) 1500-21 Days Dosing 1000-500--20-0. 28 21 28 14 21 35 0 7 14 35 0 7 Time (days) Time (days)

Synovial Sarcoma PDX (SA13412)

C4 Therapeutics

Conclusions

- Compound 27 is a potent and selective BiDAC degrader of BRD9 with improved druglike properties relative to the HIT Compound 1
- Compound 27 demonstrated efficacy in both cell-derived and patient-derived models of synovial sarcoma (IV or IP dosing)
- Compound 27 was used as a launching point for further optimization, eventually leading to the discovery of the orally-bioavailable BRD9 BiDAC degrader, CFT8634

Thank You