Initial Results of a Phase 1 First-in-Human Study of CFT7455 (Cemsidomide), a Novel MonoDAC[®] Degrader, with Dexamethasone (Dex) in Patients with Relapsed/Refractory Multiple Myeloma (RRMM)

Leah Leahy, BS¹², Riadh Lobbardi, PhD¹², Rong Chu, PhD¹², Eunju Hurh, PhD¹², Anthony S. Fiorino, MD, PhD¹², and Sagar Lonial, MD¹³ Nashville, TN; ⁸Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine, St. Louis, MO; ¹⁰Memorial Sloan Kettering Cancer Center, New York, NY; ¹¹Washington University School of Medicine, St. Louis, MO; ¹²C4 Therapeutics, Inc., Watertown, MA; ¹³Winship Cancer Institute, Emory University, Atlanta, GA

Binod Dhakal, MD¹, Andrew J. Yee, MD², Paul G. Richardson, MD³, Sikander Ailawadhi, MD⁴, Saurabh Chhabra, MD⁵, Eli Muchtar, MD⁶, Jesus G. Berdeja, MD⁷, Shambavi Richard, MD⁸, Jeffrey V. Matous, MD⁹, Urvi A. Shah, MD¹⁰, Mark A. Schroeder, MD¹¹, Amro Ali, PharmD¹², ¹Medical College of Wisconsin, Milwaukee, Wisconsin; ²Massachusetts General Hospital Cancer Center, Boston, MA; ⁴Division of Hematology, Mayo Clinic, Jacksonville, FL; ⁵Mayo Clinic Arizona, Phoenix, AZ; ⁶Mayo Clinic Rochester, Saint Paul, MN; ⁷Tennessee Oncology,

Introduction

- Cemsidomide is a novel, potent, cereblon-based IKZF1/3 MonoDAC[®] degrader rationally designed with the following properties:
- Class-leading catalytic activity to enable rapid and deep target degradation
- High binding affinity to overcome low cereblon levels that drive resistance to lenalidomide and pomalidomide
- Improved pharmacologic profile to promote tumor residence time and sustained IKZF1/3 degradation with a 14/14 dosing schedule
- Preclinical rationale for combinability with SoC therapies (Dex) and novel therapies (PIs, CD-38 mAbs, bispecific T-cell engagers)¹
- Cemsidomide binds to cereblon creating a new surface that facilitates the recruitment and ubiquitination of IKZF1/IKZF3, leading to the proteasomal degradation of both proteins (Figure 1)

Figure 1: Mechanism of Action for Cemsidomide

Methods

CFT7455-1101 Study Design²

KEY INCLUSION CRITERIA

Adults with MM, R/R to at least 3

prior lines of therapy that have

pomalidomide, a proteasome

anti-CD38 monoclonal antibody

Nonresponsive to or progressed

within 60 days of prior therapy

Creatinine clearance ≥40 mL/min

Phase 1 Study Endpoints

Primary: assess safety, tolerability

and define the RP2D/MTD

included lenalidomide,

ECOG ≤2

- Open-label, multicenter, phase 1/2 clinical trial with dose escalation and expansion phases (NCT04756726)* • Dose escalation phase, beginning with a starting oral dose of 50 μg MWF 14 days on/14 days off, following a
- Bayesian logistic regression model until determination of the MTD and/or RP2D
- Escalation cohorts enrolled 3-6 patients, once dose was declared safe by SRC, additional patients were eligible to enroll at the dose deemed safe
 - G-CSF and transfusions were not allowed in cycle 1 for dose escalation subjects Once a dose was declared safe, additional patients at each dose level were allowed G-CSF use at any
 - timepoint

Figure 2: Phase 1 Dose Escalation Cemsidomide 14/14 + Dex*

Secondary: assess PK, PD, and preliminary anti-tumor activity

*CFT7455 administered as 14 days on/14 days off in a 28-day cycle; Dex was dosed on days 1, 8, 15, and 22 at doses of 40 mg orally for patients <75 years old and 20 mg orally for patients >75 years old; 2 patients at 100 µg are excluded as they had not completed cycle 1 as of the data cut off date American Society of Hematology 2024

IKZF1/3 Degradation Induces:

- Activates fully differentiated T-cells, preventing T-cell exhaustion – Promotes secretion of key immune stimulating cytokines (e.g., IL-2)
- Disrupts hematopoietic stem cell

Patients

- At the data cutoff date (October 11, 2024), 47 patients had received cemsidomide + dexamethasone
- Baseline characteristics are shown in Table 1, and prior therapies are shown in Table 2 – Patients were heavily pre-treated, having received a median of 6 prior lines of therapy, (range 3-22)
- 66% of patients had received a CAR-T or TCE and 70% had received a prior BCMA therapy

Table 1: Baseline Characteristics		Table 2: Prior Therapies			
Characteristics	Safety Population (N=47)	Characteristics	Safety Population (N=47)		
Age, median (range)	67 (39-82 years)	Prior therapies, median (range)	6 (3-22)		
Male, n (%)	25 (53)	Duien lan alidanaida n (0/)	47 (100)		
Time since initial diagnosis, median (range)	7 (2-18 vears)	Prior lenalidomide, n (%)	47 (100)		
		Prior pomalidomide, n (%)	46 (98)		
ECOG performance status, n (%) 0 1	10 (21) 34 (72)	Prior anti-CD38 mAB, n (%)	47 (100)		
2	3 (7)	Prior CAR-T therapy, n (%)	19 (40)		
Black or African American, n (%) White, n (%)	9 (19) 33 (70)	Prior T-cell engager therapy, n (%)	21 (45)		
	5 (11)	Prior CAR-T or T-cell engager therapy, n (%)	31 (66)		
Revised ISS at screening, n (%)21Stage 121Stage 215Stage 35Missing6	21 (45) 15 (32)	Prior BCMA therapy, n (%)	33 (70)		
	5 (11) 6 (13)	Triple-class exposed*, n (%)	47 (100)		
Presence of EMD, n (%)	14 (30)	Penta-class exposed ⁺ , n (%)	40 (85)		

*Defined as exposed to ≥ 1 immunomodulatory agent, ≥ 1 proteasome inhibitor, and 1 anti-CD38 monoclonal antibody; [†]Defined as exposed to ≥ 2 immunomodulatory agents, 2 proteasome inhibitors, and 1 anti-CD38 monoclonal antibody

Table 3: Treatment Disposition

Patient Disposition, n (%)	Safety Populatio			
Ongoing	21 (45)			
Discontinued Progressive disease Withdrawal of consent Death Physician decision Other Adverse event	26 (55) 15 (32) 6 (13) 3 (6)* 1 (2) 1 (2) ⁺ 0			

*All deaths were considered unrelated to cemsidomide; deaths were due to disease progression, subdural hematoma (related to a fall), and sepsis; *Subject was transferred to hospice, did not meet IMWG definition of progressive disease

Safety

Table 4: Overall Treatment Emergent Adverse Events

Adverse Events, n (%)	50 μg MWF (N=6)	37.5 μg QD (N=12)	62.5 μg QD (N=15)	75 μg QD (N=14)	Total (N=47)
TEAEs	6 (100)	12 (100)	15 (100)	11 (79)	44 (94)
TEAEs possibly related to cemsidomide	3 (50)	11 (92)	13 (87)	7 (50)	34 (72)
TESAEs	3 (50)	6 (50)	4 (27)	4 (29)	17 (36)
TESAEs possibly related to cemsidomide	0	3 (25)	1 (7)	3 (21)	7 (15)
Any Grade ≥3 TEAEs	5 (83)	9 (75)	11 (73)	8 (57)	33 (70)
Any Grade ≥3 TEAEs possibly related to cemsidomide	2 (33)	8 (67)	7 (47)	7 (50)	24 (51)
TEAEs leading to discontinuation*	0	1 (8)	0	1 (7)	2 (4)
TEAEs leading to reduction	0	0	0	0	0

Primary reason for discontinuation for patient at 37.5 µg was withdrawal of consent; patient at 75 µg discontinued due to death deemed unrelated to cemsidomide

- 33/47 (70%) of patients experienced a Grade 3/4 TEAE
- 1 patient had a DLT: Grade 4 neutropenia >7 days at 62.5 μg QD No patient had a cemsidomide dose reduction due to TEAEs

Table 5. Treatment Emergent Adverse Events by Grade

Table 5: Treatment Emergent Adverse Events by Grade									
All Grades (N=47)	Grade 3 (N=47)	Grade 4 (N=47)	Grade 5 (N=47)						
22 (47)	6 (13)	12 (26)	0						
18 (38) 5 (11) 7 (15) 1 (2)	7 (15) 5 (11) 1 (2) 0	0 0 0 0	1(2) 0 0 1(2)						
17 (36)	10 (21)	0	0						
14 (30)	0	0	0						
10 (21)	3(6)	2 (4)	0						
10 (21)	0	0	0						
9 (19)	6 (13)	0	0						
3 (6)	3 (6)	0	0						
	All Grades (N=47) 22 (47) 18 (38) 5 (11) 7 (15) 1 (2) 17 (36) 14 (30) 10 (21) 10 (21) 9 (19) 3 (6)	All GradesGrade 3 (N=47)22 (47)6 (13)22 (47)6 (13)18 (38)7 (15)5 (11)5 (11)7 (15)1 (2)1 (2)017 (36)10 (21)14 (30)010 (21)3(6)10 (21)09 (19)6 (13)3 (6)3 (6)	All Grades (N=47)Grade 3 (N=47)Grade 4 (N=47)22 (47)6 (13)12 (26)18 (38)7 (15)05 (11)5 (11)07 (15)1 (2)01 (2)0017 (36)10 (21)010 (21)3 (6)2 (4)9 (19)6 (13)03 (6)3 (6)0						

- 2 patients experienced Grade 5 AEs (septic shock and subdural hematoma), both unrelated to cemsidomide • 18/47 (38%) of patients experienced Grade 3/4 neutropenia, an anticipated on-target effect of IKZF1/3 degradation - Neutropenia was manageable with treatment interruptions and G-CSF use when permitted
- 12/47 (26%) of patients received G-CSF with the majority of use (9/12) in patients from enrichment cohorts³

Results

on (N=47)

- Treatment disposition is shown on Table 3 with treatment ongoing for 21 patients (45%)
- The primary reason for discontinuation was progressive disease (15/26)

Anti-Myeloma Activity

• Cemsidomide plus Dex was well tolerated with a safety profile conducive to additional combinations

- Only 1 DLT occurred as of the data cutoff date
- dose reductions
- therapeutic range

Abbreviations

We would like to thank the site support staff, study sponsor, and collaborators, as well as AE, adverse events; BCMA, B-cell maturation antigen; CAR-T, chimeric antigen receptor-T cell therapy; CBR, clinical benefit rate (≥MR); CR, complete participating patients and their families for their contributions to the study response; CRBN, cereblon; Dex, dexamethasone; dFLC, difference between involved and uninvolved free light chains; DLT, dose-limiting toxicity; **ECOG**, Eastern Cooperative Oncology Group; **EMD**, extramedullary disease; **G-CSF**, granulocyte colony-stimulating factor; **IFN-y**, interferon gamma; This study is sponsored by C4 Therapeutics, Inc. All authors contributed to and approved **IKZF1**, Ikaros zinc finger protein 1; **IKZF3**, Ikaros zinc finger protein 3; **IL-2**, interleukin 2; ; **IL-6**, interleukin 6; **ISS**, international staging system; **mAbs**, the presentation monoclonal antibodies; **MM**, multiple myeloma; **MR**, minimal response; **MTD**, maximum tolerated dose; **MWF**, Monday Wednesday Friday; **NE**, not References evaluable; ORR, overall response rate (>PR); PBMCs, peripheral blood mononuclear cells; PD, progressive disease; PI, proteasome inhibitor; PK, pharmacokinetics; PR, partial response; QD, daily; R/R, relapsed/refractory; RP2D, recommended Phase 2 dose; sCR, stringent complete response . Totman J, et al. Blood Cancer Discover 2024. Poster Presentation SD, stable disease; SOC, Standard-of-Care; SRC, safety review committee; TCE, T-cell engager; TEAEs, treatment emergent adverse events; TESAEs, 2. NCT04756726. www.clinicaltrials.gov. Accessed October 31, 2024. treatment emergent serious adverse events; **TNF**α, tumor necrosis factor alpha; **VGPR**, very good partial response; **14/14**, 14 days on/14 days off

- 38% of patients experienced Grade 3/4 neutropenia, which was manageable, and no cases resulted in discontinuation or

• Cemsidomide plus Dex demonstrated compelling anti-myeloma activity across a broad range of doses, highlighting a wide

– A 36% ORR was observed at the highest dose to date at 75 μg QD and a 26% ORR was observed across all dose levels • Cemsidomide plus Dex displays a differentiated PK profile with a 2-day half-life and induces potent IKZF1/3 degradation • Cemsidomide is well suited for further development across multiple lines of treatment and in combination with other antimyeloma agents, including proteosome inhibitors, monoclonal antibodies, antibody-drug conjugates, and T-cell engagers

Acknowledgments

3. C4 Therapeutics data on file.