

Clinical Insights on Leveraging Kinetics-Based PK/PD Modeling to Drive Degrader Optimization

Stewart L. Fisher, Ph.D. 7th TPD & Induced Proximity Summit Oct 29, 2024

Disclosure Information

- I have the following financial relationships to disclose:
 - Stockholder in: C4 Therapeutics, Inc.
 - Employee of: C4 Therapeutics, Inc.

Catalytic Mechanism Requires Assessment of Time Dependence

Static Timepoint

Time course

DC₅₀ – [degrader] for 50% target depletion (≈ cellular potency)

C4 Therapeutics

E_{max} – % remaining target @ assay timepoint (maximal degradation ≈ degradation rate)

Applying an Enzymology Framework Provides Quantitative Assessments of Degrader Activity

4

Modeling Degrader Action Requires Tailored Equations

• Change in target concentration after degrader treatment is determined by:

References:

Flaxman, H., Deibler, R., Conicella, A., Ingham, O. Orsi, D., Sowa, M., Cassidy, K., Pollock, R., Fisher, S. (2023) Applications of Kinetics Modeling in Targeted Protein Degradation [Poster]. Bioorganic Gordon Research Conference, Andover, NH.

Segel, I. H. (1975). Enzyme kinetics : behavior and analysis of rapid equilibrium and steady state enzyme systems. Wiley.

Bartlett, D.W., Gilbert, A.M. (2021) A kinetic proofreading model for bispecific protein degraders. J Pharmacokinet Pharmacodyn 48, 149–163. https://doi.org/10.1007/s10928-020-09722-z

Haid, R.T.U. and Reichel, A. (2024), Transforming the Discovery of Targeted Protein Degraders: The Translational Power of Predictive PK/PD Modeling. Clin Pharmacol Ther, 116: 770-781. https://doi.org/10.1002/cpt.3273

Degrader Specific PK/PD Models Founded on Enzymology Framework

Enzymology Framework

KEY PARAMETERS

Predictive PK/PD Models Drive Efficient Drug Discovery

CFT7455, 1 mg/kg dose po, KI-KJ Anaplastic Large Cell Lymphoma model

Predictive PK/PD Models Drive Efficient Drug Discovery

CFT7455, 1 mg/kg dose po, KI-KJ Anaplastic Large Cell Lymphoma model

Predictive PK/PD Models Drive Efficient Drug Discovery

CFT7455, 1 mg/kg dose po, KI-KJ Anaplastic Large Cell Lymphoma model

PK/PD Modeling is Integral to Degrader Optimization

PK/PD Modeling is Integral to Degrader Optimization

Robust Pipeline of Degrader Medicines Pursuing Multiple Targets

Program ³	Target	Indications	Discovery	Preclinical	Early Phase Development	Late Phase Development	Rights
<u>Cemsidomide</u>	IKZF1/3	Multiple Myeloma & Non-Hodgkin's Lymphoma					
CFT1946	BRAF V600 Mutant	V600 Mutant Cancers					••••
CFT8919 ¹	EGFR L858R	Non-Small Cell Lung Cancer					
Discovery Stage Programs		Various Cancers					
Collaboration Programs		Autoimmune & Cancer	2 te	argets			Roche
		Cancer	2 targe	ets			Merck KGaA Darmstadt, Germany
		Cancer	1 targe	et			
		Autoimmune & Neurological		2 to	argets		Biogen ²

¹License and collaboration agreement with Betta Pharmaceuticals for development and commercialization in Greater China; ²Delivered development candidates to Biogen in Q1 2024 and Q3 2024; ³ CFT8634 BRD9 degrader program for synovial sarcoma and SMARCB1-null solid tumors patients was closed in Q4 2023.

BRD9 Previously Considered an Undruggable Target Where Inhibitors Are Ineffective for Synovial Sarcoma

- SMARCB1
 - Incorporation of SS18-SSX fusion results in eviction of
 - cBAF complex compromised
 - Oncogenic state

Inactivation of SMARCB1 leads to dependency on ncBAF complex

- BRD9 is uniquely present in ncBAF
- Synthetic lethal dependency on BRD9 in synovial sarcoma and other SMARCB1-deficient cancers

Key Properties of CFT8634

- Orally bioavailable
- Potent •
- Selective •

Sources: 1. Wang BC, et al. Front Oncol. 2021;11:76228. 2. Sleijfer S, et al. J Clin Oncol. 2009;27(19):3126-3132. Progression Free Survival (PFS)

Degrader Rationale

Oncogenicity of BRD9 depends on protein function not addressed by traditional inhibitors

Clinical PK/PD Modeling Requires Pharmacodynamic Threshold Identification

Pharmacodynamic threshold required for desired efficacious response

- Function of target engagement/degradation and exposure
- Dependent on target biology and tumor; not dependent on drug modality

PK/PD Modeling of CFT8634 in a Mouse Synovial Sarcoma PDX Model

Dose response efficacy indicates that the 1 mg/kg dose should be used to set the pharmacodynamic threshold for PK/PD modeling

Clinical Pharmacokinetics of CFT8634 in Patients with Synovial Sarcoma and SMARCB1-null Tumors

Clinical PK is linear and dose proportional over the entire dose range minimal accumulation observed at steady state

Comparison of Mouse and Human Pharmacokinetic Profiles

Human PPB Free Fraction: 0.05 Mouse PPB Free Fraction: 0.018

Mouse and human exposures are highly similar at equivalent doses, particularly with free fraction correction

Simulated PD Using Clinical Pharmacokinetics of CFT8634

Predicted vs Observed PD in Patients

1. Error bars represent predicted range of response over 24 h 2. PD data were measured on tumor tissue by BRD9 IHC via H-score and normalized to the average H-score from all samples at baseline. Average of H-score and SD at all dose levels are reported on the graph.

Cemsidomide: Potent Small Molecule IKZF1/3 Degrader with Enhanced Catalytic & Pharmacologic Properties

- IKZF1/3 are transcription factors required for cancer cell growth and survival in multiple myeloma (MM)
- Approved IKZF1/3 degraders (lenalidomide, pomalidomide) are widely used in MM treatment
- Relapsed/refractory MM remains a high unmet medical need

Goal: Develop an IKZF1/3 MonoDAC[™] Degrader with these properties:

- Class-leading catalytic activity to enable potent, rapid, and deep target degradation
- High binding affinity to overcome resistance to lenalidomide and pomalidomide
- Selective to reduce off-target liabilities
- Pharmacologic profile that enables sustained IKZF1/3 degradation

CRBN, cereblon; CUL4, cullin 4; DDB1, DNA damage-binding protein 1; IKZF1/3, Ikaros family zinc finger proteins 1 and 3; MonoDAC, monofunctional degradation activating compound; MM, multiple myeloma; RBX1, ring box protein 1; Ub, ubiquitin.

© 2024 C4 Therapeutics, Inc

PK/PD Modeling of Cemsidomide in Multiple Myeloma Mouse CDX Model

1. Similar response profile observed for IKZF3

Dose response efficacy indicated that the 30 µg/kg dose should be used to set the pharmacodynamic threshold for PKPD modeling

Proportional Plasma Exposure Increase Observed with Cumulative Dose

Clinical PK Exhibits a Significant Disconnect from Mouse PK

 $T_{1/2} \approx 3 h$ No accumulation observed upon multi-day dosing

 $T_{1/2} \approx 48 \text{ h}$ Significant accumulation observed (≈ 3.5 -fold)

Combined effect of 3-fold accumulation and much longer half-life results in ~10-fold higher overall efficacious exposure in human than in mouse IKZF1/3 Degradation Drives Three Distinct Areas of Hematopoietic Biology; Degrading IKZF1/3 is a Validated Therapeutic Strategy in MM and NHL

Ikaros Family Zinc Finger proteins 1 and 3 (IKZF1/3); Multiple Myeloma (MM); Non-Hodgkin's Lymphoma (NHL).

C4 Therapeutics

© 2024 C4 Therapeutics, Inc

Prolonged Steady State Exposure Is Associated With Clinical Neutropenia

Cohort A, Cycle 1 Pharmacokinetics 21 Days on/7 Days off Schedule

*Patient 4 received 50 µg for 8 days followed by 25 µg for 13 days followed by the regular 7- day rest period in cycle 1, subsequent cycles continued at 25 µg 21 days on and 7 days off in a 28 -day cycle Data not shown for Patient 5 who received 25 µg Dose

BQL (below quantification limit) results are shown at 0.01 for display only

Cohort A, Cycle 1 Neutrophil Counts 21 Days on/7 Days off Schedule

Patient 4 received 50 µg for 8 days followed by 25 µg Patient 5 received 25 µg Dose

See Poster #1675, AACR 2022

Clinical PD Confirms Sustained Suppression of IKZF1/3 With 21/7 Schedule

21/7 Schedule Does Not Provide Sufficient Time for Drug Clearance for Neutrophil Recovery

Clinical PD Confirms Sustained Suppression of IKZF1/3 With 21/7 Schedule

21/7 Schedule Does Not Provide Sufficient Time for Drug Clearance for Neutrophil Recovery

PK/PD Modeling Supports 14 Days on/14 Days off Schedule as it Provides a Sufficient IKZF1/3 Degradation Holiday

Modeled PK/PD of 14 Days on/ 14 Days off Schedule

Emerging Clinical Data is Consistent with PK/PD Modeling Prediction for 14 Days on / 14 Days off Schedule

Emerging Clinical Data is Consistent with PK/PD Modeling Prediction for 14 Days on / 14 Days off Schedule

Conclusions

- Semi-mechanistic PK/PD models that incorporate degradation kinetics parameters can be highly predictive of clinical PD response
 - Applicable to both heterobifunctional and monofunctional degraders
 - Demonstrated with different target classes
- In general, kinetic parameters determined from *in vitro* systems or fitting to *in vivo* models translate well to the clinic for oncology (CDX, PDX systems)
- Key factors that influence the predictions include pharmacokinetic differences between preclinical species and human exposure profiles
 - Plasma protein binding free fraction differences
 - Differences in tissue penetration or intrinsic clearance rates

Acknowledgements

- We thank the patients and their families for participating in our clinical trials
- We thank all the investigators and their staff
- We thank the C4T employees, past and present, who contributed to the discovery and development of Cemsidomide and CFT8634, and the PK/PD modeling platform

